40 research outputs found

    Greedy-based Value Representation for Optimal Coordination in Multi-agent Reinforcement Learning

    Full text link
    Due to the representation limitation of the joint Q value function, multi-agent reinforcement learning methods with linear value decomposition (LVD) or monotonic value decomposition (MVD) suffer from relative overgeneralization. As a result, they can not ensure optimal consistency (i.e., the correspondence between individual greedy actions and the maximal true Q value). In this paper, we derive the expression of the joint Q value function of LVD and MVD. According to the expression, we draw a transition diagram, where each self-transition node (STN) is a possible convergence. To ensure optimal consistency, the optimal node is required to be the unique STN. Therefore, we propose the greedy-based value representation (GVR), which turns the optimal node into an STN via inferior target shaping and further eliminates the non-optimal STNs via superior experience replay. In addition, GVR achieves an adaptive trade-off between optimality and stability. Our method outperforms state-of-the-art baselines in experiments on various benchmarks. Theoretical proofs and empirical results on matrix games demonstrate that GVR ensures optimal consistency under sufficient exploration

    Prioritized Planning for Target-Oriented Manipulation via Hierarchical Stacking Relationship Prediction

    Full text link
    In scenarios involving the grasping of multiple targets, the learning of stacking relationships between objects is fundamental for robots to execute safely and efficiently. However, current methods lack subdivision for the hierarchy of stacking relationship types. In scenes where objects are mostly stacked in an orderly manner, they are incapable of performing human-like and high-efficient grasping decisions. This paper proposes a perception-planning method to distinguish different stacking types between objects and generate prioritized manipulation order decisions based on given target designations. We utilize a Hierarchical Stacking Relationship Network (HSRN) to discriminate the hierarchy of stacking and generate a refined Stacking Relationship Tree (SRT) for relationship description. Considering that objects with high stacking stability can be grasped together if necessary, we introduce an elaborate decision-making planner based on the Partially Observable Markov Decision Process (POMDP), which leverages observations and generates the least grasp-consuming decision chain with robustness and is suitable for simultaneously specifying multiple targets. To verify our work, we set the scene to the dining table and augment the REGRAD dataset with a set of common tableware models for network training. Experiments show that our method effectively generates grasping decisions that conform to human requirements, and improves the implementation efficiency compared with existing methods on the basis of guaranteeing the success rate.Comment: 8 pages, 8 figure

    ESMC: Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint

    Full text link
    Large-scale online recommender system spreads all over the Internet being in charge of two basic tasks: Click-Through Rate (CTR) and Post-Click Conversion Rate (CVR) estimations. However, traditional CVR estimators suffer from well-known Sample Selection Bias and Data Sparsity issues. Entire space models were proposed to address the two issues via tracing the decision-making path of "exposure_click_purchase". Further, some researchers observed that there are purchase-related behaviors between click and purchase, which can better draw the user's decision-making intention and improve the recommendation performance. Thus, the decision-making path has been extended to "exposure_click_in-shop action_purchase" and can be modeled with conditional probability approach. Nevertheless, we observe that the chain rule of conditional probability does not always hold. We report Probability Space Confusion (PSC) issue and give a derivation of difference between ground-truth and estimation mathematically. We propose a novel Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint (ESMC) and two alternatives: Entire Space Multi-Task Model with Siamese Network (ESMS) and Entire Space Multi-Task Model in Global Domain (ESMG) to address the PSC issue. Specifically, we handle "exposure_click_in-shop action" and "in-shop action_purchase" separately in the light of characteristics of in-shop action. The first path is still treated with conditional probability while the second one is treated with parameter constraint strategy. Experiments on both offline and online environments in a large-scale recommendation system illustrate the superiority of our proposed methods over state-of-the-art models. The real-world datasets will be released
    corecore